Maximum Matching and Linear Programming in Fixed-Point Logic with Counting

Matthew Anderson Anuj Dawar Bjarki Holm

University of Cambridge Computer Laboratory

26 June 2013

Question:

Question:

Is there is logical characterisation of ${\rm P}$ on unordered structures?

 $\mathsf{FP} \subseteq \mathsf{FPC} \subseteq \tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card}) \subseteq \mathrm{P}$

Question:

```
\mathsf{FP} \subseteq \mathsf{FPC} \subseteq \tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card}) \subseteq \mathrm{P}
```

```
• P \subseteq FP? No, parity \notin FP.
```

Question:

$$\mathsf{FP}\subseteq\mathsf{FPC}\subseteq\tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card})\subseteq\mathrm{P}$$

- $P \subseteq FP$? No, parity $\notin FP$.
- $P \subseteq FPC$? No, [Cai-Fürer-Immerman '92].

$$\mathsf{FP}\subseteq\mathsf{FPC}\subseteq\tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card})\subseteq\mathrm{P}$$

- $P \subseteq FP$? No, parity $\notin FP$.
- $P \subseteq FPC$? No, [Cai-Fürer-Immerman '92].
- $P \subseteq \tilde{C}PT(Card)$?

Is there is logical characterisation of ${\rm P}$ on unordered structures?

 $\mathsf{FP} \subseteq \mathsf{FPC} \subseteq \tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card}) \subseteq \mathrm{P}$

- $P \subseteq \mathsf{FP}$? No, parity $\notin \mathsf{FP}$.
- $P \subseteq FPC$? No, [Cai-Fürer-Immerman '92].
- $P \subseteq \tilde{C}PT(Card)$?

Choiceless computation is powerful:

- CIRCUIT VALUE PROBLEM \in FP.
- BIPARTITEPM \in FPC [Blass-Gurevich-Shelah '02] and conjectured $PM \notin \tilde{C}PT(Card)$.

Is there is logical characterisation of ${\rm P}$ on unordered structures?

 $\mathsf{FP} \subseteq \mathsf{FPC} \subseteq \tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card}) \subseteq \mathrm{P}$

- $P \subseteq \mathsf{FP}$? No, parity $\notin \mathsf{FP}$.
- $P \subseteq FPC$? No, [Cai-Fürer-Immerman '92].
- $P \subseteq \tilde{C}PT(Card)$?

Choiceless computation is powerful:

- CIRCUITVALUEPROBLEM \in FP.
- BIPARTITEPM \in FPC [Blass-Gurevich-Shelah '02] and conjectured $PM \notin \tilde{C}PT(Card)$.

We show:

• MAXIMUMMATCHING \in FPC.

Is there is logical characterisation of ${\rm P}$ on unordered structures?

 $\mathsf{FP} \subseteq \mathsf{FPC} \subseteq \tilde{\mathsf{C}}\mathsf{PT}(\mathsf{Card}) \subseteq \mathrm{P}$

- $P \subseteq \mathsf{FP}$? No, parity $\notin \mathsf{FP}$.
- $P \subseteq FPC$? No, [Cai-Fürer-Immerman '92].
- $P \subseteq \tilde{C}PT(Card)$?

Choiceless computation is powerful:

- CIRCUITVALUEPROBLEM \in FP.
- BIPARTITEPM \in FPC [Blass-Gurevich-Shelah '02] and conjectured $PM \notin \tilde{C}PT(Card)$.

We show:

- MAXIMUMMATCHING \in FPC.
- LINEARPROGRAMMING \in FPC.

Structures, Numbers, and Matrices

Vocabulary τ Finite τ -structures fin $[\tau]$ Vocabulary au

Finite τ -structures fin $[\tau]$

Vocabularies for encoding numerical data in structures:

 $\tau_{\mathbb{Q}}$ Encodes the binary expansion of a rational number $q \in \mathbb{Q}$ in a domain of ordered bits B.

Vocabulary au

Finite τ -structures fin $[\tau]$

Vocabularies for encoding numerical data in structures:

- $\tau_{\mathbb{Q}}$ Encodes the binary expansion of a rational number $q \in \mathbb{Q}$ in a domain of ordered bits B.
- τ_{vec} Encodes a vector $v \in \mathbb{Q}^I$ as a set of rational numbers indexed by a separate domain I.
- $\tau_{\mathsf{mat}} \text{ Encodes a matrix } M \in \mathbb{Q}^{I \times J} \text{ as a set of rational numbers} \\ \text{indexed by a pair of separate domains } I \text{ and } J.$

- Assume standard syntax and semantics.
- FPC[τ] defines relations over dom(\mathcal{A}) \uplus [|dom(\mathcal{A})| + 1] invariant to automorphisms of $\mathcal{A} \in fin[\tau]$.

- Assume standard syntax and semantics.
- FPC[τ] defines relations over dom(\mathcal{A}) \uplus [|dom(\mathcal{A})| + 1] invariant to automorphisms of $\mathcal{A} \in fin[\tau]$.

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is definable in FPC (indeed, in FP).

- Assume standard syntax and semantics.
- FPC[τ] defines relations over dom(\mathcal{A}) \uplus [|dom(\mathcal{A})| + 1] invariant to automorphisms of $\mathcal{A} \in fin[\tau]$.

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function $\operatorname{fin}[\sigma] \to \operatorname{fin}[\tau]$ defined by a sequence of $\operatorname{FPC}[\sigma]$ formulas.

- Assume standard syntax and semantics.
- FPC[τ] defines relations over dom(\mathcal{A}) \uplus [|dom(\mathcal{A})| + 1] invariant to automorphisms of $\mathcal{A} \in fin[\tau]$.

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function $\operatorname{fin}[\sigma] \to \operatorname{fin}[\tau]$ defined by a sequence of $\operatorname{FPC}[\sigma]$ formulas.

FPC interpretations can express many standard linear algebraic operations, e.g., multiplication, inverse, and rank [Holm '10].

Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

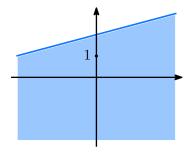
Consider the Euclidean space \mathbb{Q}^V indexed by a set V. Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

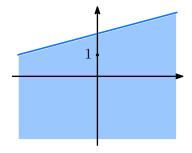


Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \leq b\}$.

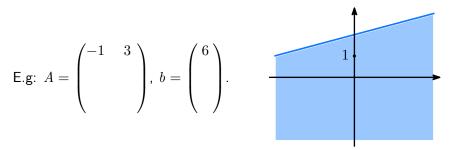


Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \leq b\}$.



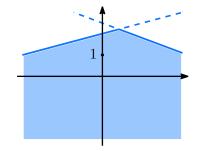
Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \le b\}$.

E.g:
$$A = \begin{pmatrix} -1 & 3 \\ 3 & 8 \\ & \end{pmatrix}$$
, $b = \begin{pmatrix} 6 \\ 20 \\ \end{pmatrix}$

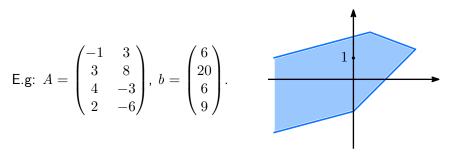


Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \leq b\}$.



Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• Size
$$\langle a, b \rangle := \langle b \rangle + \sum_{v \in V} \langle a_v \rangle$$
.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \leq b\}$.

E.g:
$$A = \begin{pmatrix} -1 & 3 \\ 3 & 8 \\ 4 & -3 \\ 2 & -6 \end{pmatrix}$$
, $b = \begin{pmatrix} 6 \\ 20 \\ 6 \\ 9 \end{pmatrix}$.

Consider the Euclidean space \mathbb{Q}^V indexed by a set V.

Constraint

• For
$$a \in \mathbb{Q}^V$$
, $b \in \mathbb{Q}$, $\{x \in \mathbb{Q}^V \mid a^\top x \le b\}$.

• Size
$$\langle a, b \rangle := \langle b \rangle + \sum_{v \in V} \langle a_v \rangle$$
.

• For
$$A \in \mathbb{Q}^{C \times V}$$
, $b \in \mathbb{Q}^{C}$, $P_{A,b} := \{x \in \mathbb{Q}^{V} \mid Ax \leq b\}$.

• Size
$$\langle P_{A,b} \rangle := \max_{r \in C} \langle A_r, b_r \rangle$$
.

E.g:
$$A = \begin{pmatrix} -1 & 3 \\ 3 & 8 \\ 4 & -3 \\ 2 & -6 \end{pmatrix}$$
, $b = \begin{pmatrix} 6 \\ 20 \\ 6 \\ 9 \end{pmatrix}$

Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

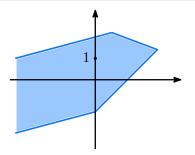
1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

2 $P = \emptyset$, or

Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

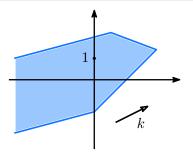
2 $P = \emptyset$, or



Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

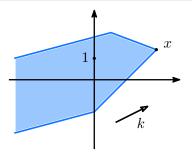
2 $P = \emptyset$, or



Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

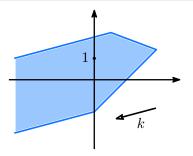
2 $P = \emptyset$, or



Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

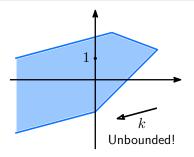
2 $P = \emptyset$, or



Given: A polytope $P \subseteq \mathbb{Q}^V$ and objective vector $k \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in P\}$,

2 $P = \emptyset$, or



Separation Problem

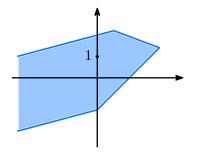
Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or

2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}.$

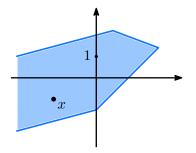
Separation Problem

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



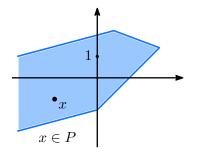
Separation Problem

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



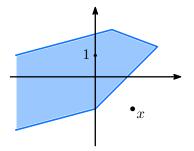
Separation Problem

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



Separation Problem

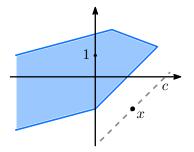
1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

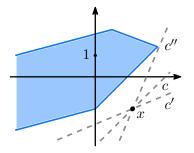
1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.



Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.

For polytopes in ordered spaces, the separation and optimisation problem are polynomial-time equivalent (via the ellipsoid method [Khachiyan '79]).

Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.

Typical algorithm for solving separation on explicit polytope $P_{A,b}$.

SEP
$$(A \in \mathbb{Q}^{C \times V}, b \in \mathbb{Q}^{C}, x \in \mathbb{Q}^{V})$$
:

1 If $Ax \leq b$, return " $x \in P$ ".

2 Pick
$$r \in C$$
 with $A_r x > b_r$.

3 Return A_r .

Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.

Typical algorithm for solving separation on explicit polytope $P_{A,b}$.

SEP
$$(A \in \mathbb{Q}^{C \times V}, b \in \mathbb{Q}^{C}, x \in \mathbb{Q}^{V})$$
:

1 If $Ax \leq b$, return " $x \in P$ ".

2 Pick $r \in C$ with $A_r x > b_r$.

3 Return A_r .

Separation Problem

Given: A polytope $P \subseteq \mathbb{Q}^V$ and point $x \in \mathbb{Q}^V$. **Determine:**

1
$$x \in P$$
, or
2 $c \in \mathbb{Q}^V$ with $c^\top x > \max\{c^\top y \mid y \in P\}$.

Typical algorithm for solving separation on explicit polytope $P_{A,b}$.

$$\begin{split} & \text{SEP}(A \in \mathbb{Q}^{C \times V}, b \in \mathbb{Q}^{C}, x \in \mathbb{Q}^{V}): \\ & \text{1 If } Ax \leq b, \text{ return } ``x \in P". \\ & \text{1 If } Ax \leq b, \text{ return } ``x \in P". \\ & \text{2 Pick } r \in C \text{ with } A_{r}x > b_{r}. \Longrightarrow \begin{cases} 2 & c \leftarrow \sum_{\{r \in C \mid A_{r}x > b_{r}\}} A_{r}. \\ & \text{3 If } c = 0^{V}, \text{ return } 1^{V}. \\ & \text{3 Return } A_{r}. \end{cases} \end{split}$$

Representation

A representation (au, u) of a class $\mathcal P$ of polytopes is

- a vocabulary au, and
- an onto function ν : fin[τ] → P which is isomorphism invariant, i.e., A ≅ B ⇒ ν(A) ≅ ν(B), ∀A, B ∈ fin[τ].

Representation

A representation (au,
u) of a class $\mathcal P$ of polytopes is

- a vocabulary au, and
- an onto function ν : fin[τ] → P which is isomorphism invariant, i.e., A ≅ B ⇒ ν(A) ≅ ν(B), ∀A, B ∈ fin[τ].

Explicit representation takes $\operatorname{fin}[\tau_{\mathsf{mat}} \uplus \tau_{\mathsf{vec}}]$ to the class of all polytopes via $\nu : (A, b) \mapsto P_{A,b}$.

Representation

A representation (au,
u) of a class $\mathcal P$ of polytopes is

- a vocabulary au, and
- an onto function ν : fin[τ] → P which is isomorphism invariant, i.e., A ≅ B ⇒ ν(A) ≅ ν(B), ∀A, B ∈ fin[τ].

Explicit representation takes $\operatorname{fin}[\tau_{\mathsf{mat}} \uplus \tau_{\mathsf{vec}}]$ to the class of all polytopes via $\nu : (A, b) \mapsto P_{A,b}$.

A representation (τ, ν) is well described if for all $\mathcal{A} \in \operatorname{fin}[\tau]$, $\langle \nu(\mathcal{A}) \rangle = \operatorname{poly}(|\mathcal{A}|)$.

Representation

A representation (τ,ν) of a class ${\mathcal P}$ of polytopes is

- a vocabulary au, and
- an onto function ν : fin[τ] → P which is isomorphism invariant, i.e., A ≅ B ⇒ ν(A) ≅ ν(B), ∀A, B ∈ fin[τ].

Explicit representation takes $\operatorname{fin}[\tau_{\mathsf{mat}} \uplus \tau_{\mathsf{vec}}]$ to the class of all polytopes via $\nu : (A, b) \mapsto P_{A,b}$.

A representation (τ, ν) is well described if for all $\mathcal{A} \in \operatorname{fin}[\tau]$, $\langle \nu(\mathcal{A}) \rangle = \operatorname{poly}(|\mathcal{A}|)$.

• The explicit representation is trivially well described.

Representation

A representation (τ,ν) of a class ${\mathcal P}$ of polytopes is

- a vocabulary au, and
- an onto function ν : fin[τ] → P which is isomorphism invariant, i.e., A ≅ B ⇒ ν(A) ≅ ν(B), ∀A, B ∈ fin[τ].

Explicit representation takes $\operatorname{fin}[\tau_{\mathsf{mat}} \uplus \tau_{\mathsf{vec}}]$ to the class of all polytopes via $\nu : (A, b) \mapsto P_{A,b}$.

A representation (τ, ν) is well described if for all $\mathcal{A} \in \operatorname{fin}[\tau]$, $\langle \nu(\mathcal{A}) \rangle = \operatorname{poly}(|\mathcal{A}|)$.

- The explicit representation is trivially well described.
- There are well-described representations with an exponential number of constraints.

Let $\mathcal{P}_{\tau,\nu}$ be a class of polytopes given by a representation (τ,ν) . The linear optimisation problem for $\mathcal{P}_{\tau,\nu}$ is expressible in FPC if there is an FPC interpretation

 $\operatorname{fin}[\tau \uplus \tau_{\mathsf{vec}}] \to \operatorname{fin}[\tau_{\mathbb{Q}} \uplus \tau_{\mathsf{vec}}]$

Let $\mathcal{P}_{\tau,\nu}$ be a class of polytopes given by a representation (τ,ν) . The linear optimisation problem for $\mathcal{P}_{\tau,\nu}$ is expressible in FPC if there is an FPC interpretation

$$\operatorname{fin}[\tau \uplus \tau_{\mathsf{vec}}] \to \operatorname{fin}[\tau_{\mathbb{Q}} \uplus \tau_{\mathsf{vec}}]$$

which takes

 $(\mathcal{A} \in \operatorname{fin}[\tau], \text{ vector } k) \mapsto (\text{rational flag } f, \text{point } x)$

Let $\mathcal{P}_{\tau,\nu}$ be a class of polytopes given by a representation (τ,ν) . The linear optimisation problem for $\mathcal{P}_{\tau,\nu}$ is expressible in FPC if there is an FPC interpretation

$$\operatorname{fin}[\tau \uplus \tau_{\mathsf{vec}}] \to \operatorname{fin}[\tau_{\mathbb{Q}} \uplus \tau_{\mathsf{vec}}]$$

which takes

 $(\mathcal{A} \in \operatorname{fin}[\tau], \text{ vector } k) \mapsto (\text{rational flag } f, \text{point } x)$

such that

1 $f = 0 \Rightarrow x \in \nu(\mathcal{A})$ with $k^{\top}x = \max\{k^{\top}y \mid y \in \nu(\mathcal{A})\}$, 2 $f = 1 \Rightarrow \nu(\mathcal{A}) = \emptyset$, or 3 $f = 2 \Rightarrow \nu(\mathcal{A})$ is unbounded in the direction of k.

Let $\mathcal{P}_{\tau,\nu}$ be a class of polytopes given by a representation (τ,ν) . The linear optimisation problem for $\mathcal{P}_{\tau,\nu}$ is expressible in FPC if there is an FPC interpretation

$$\operatorname{fin}[\tau \uplus \tau_{\mathsf{vec}}] \to \operatorname{fin}[\tau_{\mathbb{Q}} \uplus \tau_{\mathsf{vec}}]$$

which takes

 $(\mathcal{A} \in \operatorname{fin}[\tau], \text{ vector } k) \mapsto (\text{rational flag } f, \text{point } x)$

such that

1
$$f = 0 \Rightarrow x \in \nu(\mathcal{A})$$
 with $k^{\top}x = \max\{k^{\top}y \mid y \in \nu(\mathcal{A})\}$,
2 $f = 1 \Rightarrow \nu(\mathcal{A}) = \emptyset$, or
3 $f = 2 \Rightarrow \nu(\mathcal{A})$ is unbounded in the direction of k .

An analogous definition can be made for the separation problem.

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let \mathcal{P} be a class of well-described polytopes. Then, linear optimisation on $\mathcal{P} \leq^p_{\mathcal{T}}$ separation on \mathcal{P}

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let \mathcal{P} be a class of well-described polytopes. Then, linear optimisation on $\mathcal{P} \leq^p_T$ separation on \mathcal{P}

We prove an FPC analog.

Theorem

Let $\mathcal{P}_{\tau,\nu}$ be a class of well-describe polytopes given by τ -structures and the function ν . Then,

linear optimisation on $\mathcal{P}_{\tau,\nu} \leq_{FPC}$ separation on $\mathcal{P}_{\tau,\nu}$

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let \mathcal{P} be a class of well-described polytopes. Then, linear optimisation on $\mathcal{P} \leq^p_T$ separation on \mathcal{P}

We prove an FPC analog.

Theorem

Let $\mathcal{P}_{\tau,\nu}$ be a class of well-describe polytopes given by τ -structures and the function ν . Then,

linear optimisation on $\mathcal{P}_{\tau,\nu} \leq_{FPC}$ separation on $\mathcal{P}_{\tau,\nu}$

Corollary (Linear Programming \in FPC)

There is an FPC interpretation expressing the linear optimisation problem w.r.t. the explicit representation.

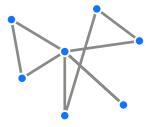
Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

- 1 for all $e \neq e' \in M$, $|e \cap e'| = 0$, and
- $[\mathbf{2} \ |M|$ is maximum.

Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

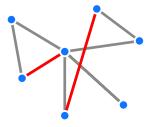
1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and

2 |M| is maximum.



Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

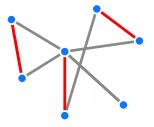
1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and



Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

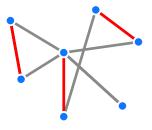
1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and

2 |M| is maximum.



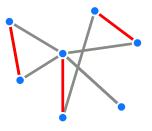
Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and



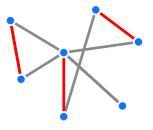
Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and



Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

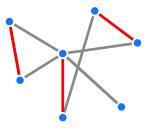
1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and



Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that 1 for all $e \neq e' \in M$, $|e \cap e'| = 0$, and

2 |M| is maximum.

There is no canonical maximum matching!



Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

1 for all
$$e \neq e' \in M$$
, $|e \cap e'| = 0$, and

2 |M| is maximum.

There is no canonical maximum matching!

Theorem

There is an FPC interpretation $\operatorname{fin}[\tau_{mat}] \to \operatorname{fin}[\tau_{\mathbb{Q}}]$ which takes a τ_{mat} -structure coding a graph G to an integer m indicating the size of a maximum matching in G.

Given: A graph G = (V, E) by an incidence matrix $\{0, 1\}^{V \times E}$. **Determine:** $M \subseteq E$ such that

1 for all $e \neq e' \in M$, $|e \cap e'| = 0$, and

2 |M| is maximum.

There is no canonical maximum matching!

Theorem

There is an FPC interpretation $\operatorname{fin}[\tau_{mat}] \to \operatorname{fin}[\tau_{\mathbb{Q}}]$ which takes a τ_{mat} -structure coding a graph G to an integer m indicating the size of a maximum matching in G.

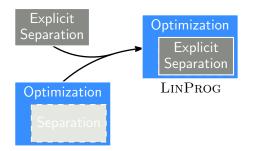
This answers an open question of [Blass-Gurevich-Shelah '99].

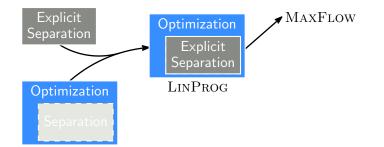
Optimization

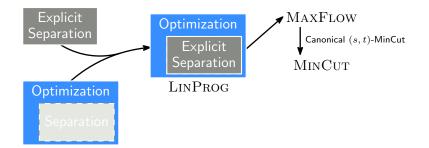
Separation

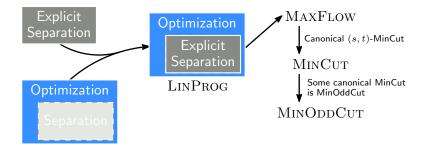
Explicit Separation

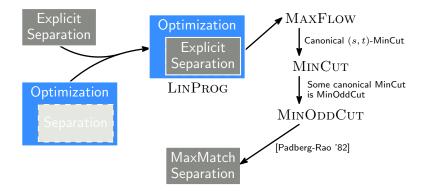
Optimization Separation

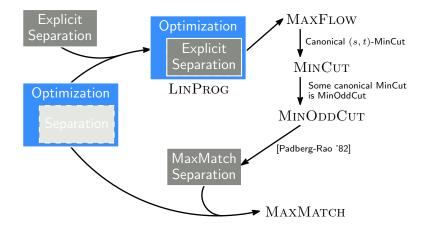












Suppose we have a bijection $\sigma: V \to [|V|]$.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

Suppose we have a bijection $\sigma: V \to [|V|]$.

- σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.
- $\sigma + \text{SEP}$ on $P + \text{Immerman-Vardi Thm} \Rightarrow \text{OPT}$ on P.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

• σ + SEP on P + Immerman-Vardi Thm \Rightarrow OPT on P. Difficulty: We don't (or can't) know σ .

• Elements of V are initially indistinguishable.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

• σ + SEP on P + Immerman-Vardi Thm \Rightarrow OPT on P. Difficulty: We don't (or can't) know σ .

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V.

• Let
$$SEP(P, 0^V) = c$$
.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

• σ + SEP on P + Immerman-Vardi Thm \Rightarrow OPT on P. Difficulty: We don't (or can't) know σ .

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V.

• Let
$$SEP(P, 0^V) = c$$
.

• Suppose for some $u, v \in V$, $c_u \neq c_v$.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

• σ + SEP on P + Immerman-Vardi Thm \Rightarrow OPT on P. Difficulty: We don't (or can't) know σ .

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V.

• Let
$$SEP(P, 0^V) = c$$
.

- Suppose for some $u, v \in V$, $c_u \neq c_v$.
- Learn a relative ordering of u and v because $c_u, c_v \in \mathbb{Q}$.

Suppose we have a bijection $\sigma: V \to [|V|]$.

• σ induces an isometry $\mathbb{Q}^V \to \mathbb{Q}^{|V|}$.

• σ + SEP on P + Immerman-Vardi Thm \Rightarrow OPT on P. Difficulty: We don't (or can't) know σ .

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V.

• Let
$$SEP(P, 0^V) = c$$
.

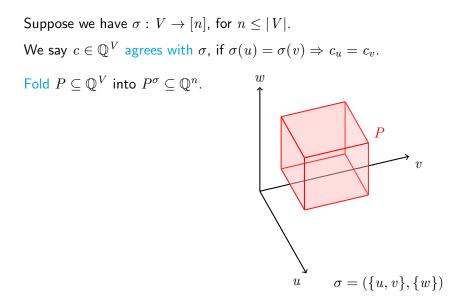
- Suppose for some $u, v \in V$, $c_u \neq c_v$.
- Learn a relative ordering of u and v because $c_u, c_v \in \mathbb{Q}$.

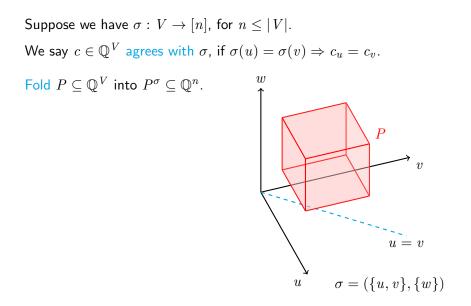
We can use such c to construct an approximate σ .

Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$.

Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$.

Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$. Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$.





Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$. Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$. \mathcal{X} Р v = v $\sigma = (\{u, v\}, \{w\})$ u

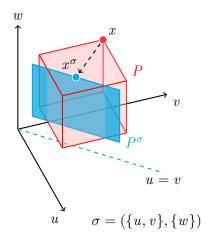
Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$. Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$. x^{σ} Р v = v $\sigma = (\{u, v\}, \{w\})$ 11

Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$. Fold $P \subset \mathbb{O}^V$ into $P^{\sigma} \subset \mathbb{O}^n$. x^{c} Р v = v $\sigma = (\{u, v\}, \{w\})$ 11

Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$.

Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$.

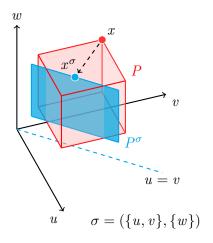
- P^{σ} is a polytope.
- $\langle P^{\sigma} \rangle = \operatorname{poly}(\langle P \rangle).$



Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$.

Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$.

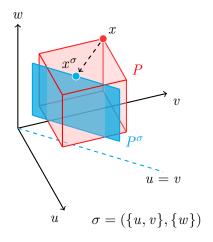
- P^σ is a polytope.
- $\langle P^{\sigma} \rangle = \operatorname{poly}(\langle P \rangle).$
- An optimum of P^{σ} gives an optimum of P.



Suppose we have $\sigma: V \to [n]$, for $n \leq |V|$. We say $c \in \mathbb{Q}^V$ agrees with σ , if $\sigma(u) = \sigma(v) \Rightarrow c_u = c_v$.

Fold $P \subseteq \mathbb{Q}^V$ into $P^{\sigma} \subseteq \mathbb{Q}^n$.

- P^{σ} is a polytope.
- $\langle P^{\sigma} \rangle = \operatorname{poly}(\langle P \rangle).$
- An optimum of P^{σ} gives an optimum of P.
- SEP (P^{σ}, x) reduces to SEP $(P, x^{-\sigma}) = c$, but... only if c agrees with σ .



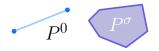
Key Idea Attempt to optimise on P^{σ} .

• If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.

- If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.
- Else, refine disagreement of c and σ into σ' and try again.

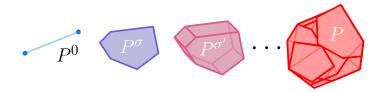
- If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.
- Else, refine disagreement of c and σ into σ' and try again.

- If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.
- Else, refine disagreement of c and σ into σ' and try again.



- If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.
- Else, refine disagreement of c and σ into σ' and try again.

- If $c = \text{SEP}(P, x^{-\sigma})$ always agrees, return eventual optimum.
- Else, refine disagreement of c and σ into σ' and try again.



Summary

Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let $\mathcal{P}_{\tau,\nu}$ be a class of well-describe polytopes given by τ -structures and the function ν . Then,

linear optimisation on $\mathcal{P}_{\tau,\nu} \leq_{FPC}$ separation on $\mathcal{P}_{\tau,\nu}$

Summary

Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let $\mathcal{P}_{\tau,\nu}$ be a class of well-describe polytopes given by τ -structures and the function ν . Then,

linear optimisation on $\mathcal{P}_{\tau,\nu} \leq_{FPC}$ separation on $\mathcal{P}_{\tau,\nu}$

And use it to prove several optimisation problems are in FPC.

Theorem

The follow problems are expressible in FPC:

- LinProg,
- MaxFlow / MinCut,
- MINODDCUT, and
- MAXMATCH.

Open Questions

- Extend our main reduction to:
 - quadratic programs,
 - semidefinite programs, or
 - convex programs.
- What other problems can be put in FPC?
- Is linear programming complete for FPC under FO interpretations?
- Do our results provide a route to proving integrality gaps for hierarchies of linear programming relaxations using inexpressibility in FPC?

Thanks!