
Maximum Matching and Linear Programming
in Fixed-Point Logic with Counting

University of Cambridge Computer Laboratory

26 June 2013

Matthew Anderson Anuj Dawar Bjarki Holm



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.



Structures, Numbers, and Matrices

Vocabulary τ

Finite τ -structures fin[τ ]

Vocabularies for encoding numerical data in structures:

τQ Encodes the binary expansion of a rational number q ∈ Q in a
domain of ordered bits B .

τvec Encodes a vector v ∈ QI as a set of rational numbers indexed
by a separate domain I .

τmat Encodes a matrix M ∈ QI×J as a set of rational numbers
indexed by a pair of separate domains I and J .



Structures, Numbers, and Matrices

Vocabulary τ

Finite τ -structures fin[τ ]

Vocabularies for encoding numerical data in structures:

τQ Encodes the binary expansion of a rational number q ∈ Q in a
domain of ordered bits B .

τvec Encodes a vector v ∈ QI as a set of rational numbers indexed
by a separate domain I .

τmat Encodes a matrix M ∈ QI×J as a set of rational numbers
indexed by a pair of separate domains I and J .



Structures, Numbers, and Matrices

Vocabulary τ

Finite τ -structures fin[τ ]

Vocabularies for encoding numerical data in structures:

τQ Encodes the binary expansion of a rational number q ∈ Q in a
domain of ordered bits B .

τvec Encodes a vector v ∈ QI as a set of rational numbers indexed
by a separate domain I .

τmat Encodes a matrix M ∈ QI×J as a set of rational numbers
indexed by a pair of separate domains I and J .



FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• FPC[τ ] defines relations over dom(A) ] [|dom(A)|+ 1]
invariant to automorphisms of A ∈ fin[τ ].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function fin[σ]→ fin[τ ]
defined by a sequence of FPC[σ] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm ’10].



FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• FPC[τ ] defines relations over dom(A) ] [|dom(A)|+ 1]
invariant to automorphisms of A ∈ fin[τ ].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function fin[σ]→ fin[τ ]
defined by a sequence of FPC[σ] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm ’10].



FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• FPC[τ ] defines relations over dom(A) ] [|dom(A)|+ 1]
invariant to automorphisms of A ∈ fin[τ ].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function fin[σ]→ fin[τ ]
defined by a sequence of FPC[σ] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm ’10].



FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• FPC[τ ] defines relations over dom(A) ] [|dom(A)|+ 1]
invariant to automorphisms of A ∈ fin[τ ].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function fin[σ]→ fin[τ ]
defined by a sequence of FPC[σ] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm ’10].



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.
Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.
Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3
3 8

4 −3
2 −6

, b =


6
20

6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3
3 8
4 −3
2 −6

, b =


6
20
6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.
• Size 〈a, b〉 := 〈b〉+

∑
v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3
3 8
4 −3
2 −6

, b =


6
20
6
9

.

1



Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.
• Size 〈a, b〉 := 〈b〉+

∑
v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.
• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3
3 8
4 −3
2 −6

, b =


6
20
6
9

.

1



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .

1



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .

k

1



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .

k

1
x



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .

1

k



Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .

1

k
Unbounded!



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1

x



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1

x

x ∈ P



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1

x



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1

x

c



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

1

x

c

c′′

c′



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

For polytopes in ordered spaces, the separation and optimisation
problem are polynomial-time equivalent (via the ellipsoid method
[Khachiyan ’79]).



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

Typical algorithm for solving separation on explicit polytope PA,b .

SEP(A ∈ QC×V , b ∈ QC , x ∈ QV ):

1 If Ax ≤ b, return “x ∈ P”.

2 Pick r ∈ C with Arx > br .

3 Return Ar .

1 If Ax ≤ b, return “x ∈ P”.

2 c ←∑
{r∈C | Arx>br}Ar .

3 If c = 0V , return 1V .

4 Return c.

⇒
{



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

Typical algorithm for solving separation on explicit polytope PA,b .

SEP(A ∈ QC×V , b ∈ QC , x ∈ QV ):

1 If Ax ≤ b, return “x ∈ P”.

2 Pick r ∈ C with Arx > br .

3 Return Ar .

1 If Ax ≤ b, return “x ∈ P”.

2 c ←∑
{r∈C | Arx>br}Ar .

3 If c = 0V , return 1V .

4 Return c.

⇒
{



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

Typical algorithm for solving separation on explicit polytope PA,b .

SEP(A ∈ QC×V , b ∈ QC , x ∈ QV ):

1 If Ax ≤ b, return “x ∈ P”.

2 Pick r ∈ C with Arx > br .

3 Return Ar .

1 If Ax ≤ b, return “x ∈ P”.

2 c ←∑
{r∈C | Arx>br}Ar .

3 If c = 0V , return 1V .

4 Return c.

⇒
{



Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.



Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.



Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.



Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.



Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.



Convex Optimisation – Representation, contd.

Expressing Linear Optimisation

Let Pτ,ν be a class of polytopes given by a representation (τ, ν).
The linear optimisation problem for Pτ,ν is expressible in FPC if
there is an FPC interpretation

fin[τ ] τvec]→ fin[τQ ] τvec]

which takes

(A ∈ fin[τ ], vector k) 7→ (rational flag f , point x )

such that

1 f = 0⇒ x ∈ ν(A) with k>x = max{k>y | y ∈ ν(A)},
2 f = 1⇒ ν(A) = ∅, or

3 f = 2⇒ ν(A) is unbounded in the direction of k .

An analogous definition can be made for the separation problem.



Convex Optimisation – Representation, contd.

Expressing Linear Optimisation

Let Pτ,ν be a class of polytopes given by a representation (τ, ν).
The linear optimisation problem for Pτ,ν is expressible in FPC if
there is an FPC interpretation

fin[τ ] τvec]→ fin[τQ ] τvec]
which takes

(A ∈ fin[τ ], vector k) 7→ (rational flag f , point x )

such that

1 f = 0⇒ x ∈ ν(A) with k>x = max{k>y | y ∈ ν(A)},
2 f = 1⇒ ν(A) = ∅, or

3 f = 2⇒ ν(A) is unbounded in the direction of k .

An analogous definition can be made for the separation problem.



Convex Optimisation – Representation, contd.

Expressing Linear Optimisation

Let Pτ,ν be a class of polytopes given by a representation (τ, ν).
The linear optimisation problem for Pτ,ν is expressible in FPC if
there is an FPC interpretation

fin[τ ] τvec]→ fin[τQ ] τvec]
which takes

(A ∈ fin[τ ], vector k) 7→ (rational flag f , point x )

such that

1 f = 0⇒ x ∈ ν(A) with k>x = max{k>y | y ∈ ν(A)},
2 f = 1⇒ ν(A) = ∅, or

3 f = 2⇒ ν(A) is unbounded in the direction of k .

An analogous definition can be made for the separation problem.



Convex Optimisation – Representation, contd.

Expressing Linear Optimisation

Let Pτ,ν be a class of polytopes given by a representation (τ, ν).
The linear optimisation problem for Pτ,ν is expressible in FPC if
there is an FPC interpretation

fin[τ ] τvec]→ fin[τQ ] τvec]
which takes

(A ∈ fin[τ ], vector k) 7→ (rational flag f , point x )

such that

1 f = 0⇒ x ∈ ν(A) with k>x = max{k>y | y ∈ ν(A)},
2 f = 1⇒ ν(A) = ∅, or

3 f = 2⇒ ν(A) is unbounded in the direction of k .

An analogous definition can be made for the separation problem.



Main Result – Linear Programming ∈ FPC

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let P be a class of well-described polytopes. Then,

linear optimisation on P ≤p
T separation on P

We prove an FPC analog.

Theorem

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

Corollary (Linear Programming ∈ FPC)

There is an FPC interpretation expressing the linear optimisation
problem w.r.t. the explicit representation.



Main Result – Linear Programming ∈ FPC

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let P be a class of well-described polytopes. Then,

linear optimisation on P ≤p
T separation on P

We prove an FPC analog.

Theorem

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

Corollary (Linear Programming ∈ FPC)

There is an FPC interpretation expressing the linear optimisation
problem w.r.t. the explicit representation.



Main Result – Linear Programming ∈ FPC

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let P be a class of well-described polytopes. Then,

linear optimisation on P ≤p
T separation on P

We prove an FPC analog.

Theorem

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

Corollary (Linear Programming ∈ FPC)

There is an FPC interpretation expressing the linear optimisation
problem w.r.t. the explicit representation.



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

Theorem

There is an FPC interpretation fin[τmat]→ fin[τQ] which takes a
τmat-structure coding a graph G to an integer m indicating the
size of a maximum matching in G .

This answers an open question of [Blass-Gurevich-Shelah ’99].



Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

Theorem

There is an FPC interpretation fin[τmat]→ fin[τQ] which takes a
τmat-structure coding a graph G to an integer m indicating the
size of a maximum matching in G .

This answers an open question of [Blass-Gurevich-Shelah ’99].



Proof Overview

Optimization

Separation



Proof Overview

Optimization

Separation

Explicit
Separation



Proof Overview

LinProgOptimization

Separation

Explicit
Separation

Optimization

Separation
Explicit

Separation



Proof Overview

LinProgOptimization

Separation

Explicit
Separation

MaxFlowOptimization

Separation
Explicit

Separation



Proof Overview

MinCut

Canonical (s, t)-MinCut

LinProgOptimization

Separation

Explicit
Separation

MaxFlowOptimization

Separation
Explicit

Separation



Proof Overview

MinCut

MinOddCut

Some canonical MinCut

Canonical (s, t)-MinCut

is MinOddCut
LinProgOptimization

Separation

Explicit
Separation

MaxFlowOptimization

Separation
Explicit

Separation



Proof Overview

MinCut

MinOddCut

[Padberg-Rao ’82]

Some canonical MinCut

Canonical (s, t)-MinCut

is MinOddCut
LinProgOptimization

Separation

Explicit
Separation

MaxMatch
Separation

MaxFlowOptimization

Separation
Explicit

Separation



Proof Overview

MinCut

MinOddCut

MaxMatch

[Padberg-Rao ’82]

Some canonical MinCut

Canonical (s, t)-MinCut

is MinOddCut
LinProgOptimization

Separation

Explicit
Separation

MaxMatch
Separation

MaxFlowOptimization

Separation
Explicit

Separation



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].

• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.

• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].
• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.

We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.
We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.

P 0



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.

P 0 P σ



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.

P 0 P σ P σ′



Proof Sketch – Optimisation to Separation, contd.

Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.

· · ·P 0 P σ P σ′ P



Summary

Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

And use it to prove several optimisation problems are in FPC.

Theorem

The follow problems are expressible in FPC:

• LinProg,

• MaxFlow / MinCut,

• MinOddCut, and

• MaxMatch.



Summary

Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

And use it to prove several optimisation problems are in FPC.

Theorem

The follow problems are expressible in FPC:

• LinProg,

• MaxFlow / MinCut,

• MinOddCut, and

• MaxMatch.



Open Questions

• Extend our main reduction to:
• quadratic programs,
• semidefinite programs, or
• convex programs.

• What other problems can be put in FPC?

• Is linear programming complete for FPC under FO
interpretations?

• Do our results provide a route to proving integrality gaps for
hierarchies of linear programming relaxations using
inexpressibility in FPC?

Thanks!


	Motivation
	Background
	Geometry
	Representation

	Results / Proof Overview
	Proof Sketch
	Conclusion

