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Motivation

Question:
Is there is logical characterisation of P on unordered structures?

FP ⊆ FPC ⊆ C̃PT(Card) ⊆ P

• P ⊆ FP? No, parity 6∈ FP.

• P ⊆ FPC? No, [Cai-Fürer-Immerman ’92].

• P ⊆ C̃PT(Card)?

Choiceless computation is powerful:

• CircuitValueProblem ∈ FP.

• BipartitePM ∈ FPC [Blass-Gurevich-Shelah ’02] and
conjectured PM 6∈ C̃PT(Card).

We show:

• MaximumMatching ∈ FPC.

• LinearProgramming ∈ FPC.
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Structures, Numbers, and Matrices

Vocabulary τ

Finite τ -structures fin[τ ]

Vocabularies for encoding numerical data in structures:

τQ Encodes the binary expansion of a rational number q ∈ Q in a
domain of ordered bits B .

τvec Encodes a vector v ∈ QI as a set of rational numbers indexed
by a separate domain I .

τmat Encodes a matrix M ∈ QI×J as a set of rational numbers
indexed by a pair of separate domains I and J .
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FPC and Interpretations

FPC Inflationary fixed-point logic extended with the ability to
express the size of definable sets.

• Assume standard syntax and semantics.

• FPC[τ ] defines relations over dom(A) ] [|dom(A)|+ 1]
invariant to automorphisms of A ∈ fin[τ ].

Immerman-Vardi Theorem

Every polynomial-time decidable property of ordered structures is
definable in FPC (indeed, in FP).

An FPC interpretation of τ in σ is a function fin[σ]→ fin[τ ]
defined by a sequence of FPC[σ] formulas.

FPC interpretations can express many standard linear algebraic
operations, e.g., multiplication, inverse, and rank [Holm ’10].
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Convex Optimisation – Geometry

Consider the Euclidean space QV indexed by a set V .

Constraint

• For a ∈ QV , b ∈ Q, {x ∈ QV | a>x ≤ b}.

• Size 〈a, b〉 := 〈b〉+
∑

v∈V 〈av 〉.

Polytope

• For A ∈ QC×V , b ∈ QC , PA,b := {x ∈ QV | Ax ≤ b}.

• Size 〈PA,b〉 := maxr∈C 〈Ar , br 〉.

E.g: A =


−1 3

3 8
4 −3
2 −6

, b =


6

20
6
9

.
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Convex Optimisation – Linear Optimisation

Linear Optimisation Problem

Given: A polytope P ⊆ QV and objective vector k ∈ QV .
Determine:

1 x ∈ P with k>x = max{k>y | y ∈ P},
2 P = ∅, or

3 P is unbounded in the direction of k .
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Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.
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Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

For polytopes in ordered spaces, the separation and optimisation
problem are polynomial-time equivalent (via the ellipsoid method
[Khachiyan ’79]).



Convex Optimisation – Separation

Separation Problem

Given: A polytope P ⊆ QV and point x ∈ QV .
Determine:

1 x ∈ P , or

2 c ∈ QV with c>x > max{c>y | y ∈ P}.

Typical algorithm for solving separation on explicit polytope PA,b .

SEP(A ∈ QC×V , b ∈ QC , x ∈ QV ):

1 If Ax ≤ b, return “x ∈ P”.

2 Pick r ∈ C with Arx > br .

3 Return Ar .

1 If Ax ≤ b, return “x ∈ P”.

2 c ←∑
{r∈C | Arx>br}Ar .

3 If c = 0V , return 1V .

4 Return c.

⇒
{
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Convex Optimisation – Representation

Representation

A representation (τ, ν) of a class P of polytopes is

• a vocabulary τ , and

• an onto function ν : fin[τ ]→ P which is isomorphism
invariant, i.e., A ∼= B ⇒ ν(A) ∼= ν(B), ∀A,B ∈ fin[τ ].

Explicit representation takes fin[τmat ] τvec] to the class of all
polytopes via ν : (A, b) 7→ PA,b .

A representation (τ, ν) is well described if for all A ∈ fin[τ ],
〈ν(A)〉 = poly(|A|).

• The explicit representation is trivially well described.

• There are well-described representations with an exponential
number of constraints.
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Convex Optimisation – Representation, contd.

Expressing Linear Optimisation

Let Pτ,ν be a class of polytopes given by a representation (τ, ν).
The linear optimisation problem for Pτ,ν is expressible in FPC if
there is an FPC interpretation

fin[τ ] τvec]→ fin[τQ ] τvec]

which takes

(A ∈ fin[τ ], vector k) 7→ (rational flag f , point x )

such that

1 f = 0⇒ x ∈ ν(A) with k>x = max{k>y | y ∈ ν(A)},
2 f = 1⇒ ν(A) = ∅, or

3 f = 2⇒ ν(A) is unbounded in the direction of k .

An analogous definition can be made for the separation problem.
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Main Result – Linear Programming ∈ FPC

Theorem (c.f., e.g., [GLS88, Theorem 6.4.9])

Let P be a class of well-described polytopes. Then,

linear optimisation on P ≤p
T separation on P

We prove an FPC analog.

Theorem

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

Corollary (Linear Programming ∈ FPC)

There is an FPC interpretation expressing the linear optimisation
problem w.r.t. the explicit representation.
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Main Result – Maximum Matching ∈ FPC

Maximum Matching Problem

Given: A graph G = (V ,E ) by an incidence matrix {0, 1}V×E .
Determine: M ⊆ E such that

1 for all e 6= e ′ ∈ M , |e ∩ e ′| = 0, and

2 |M | is maximum.

There is no canonical maximum matching!

This answers an open question of [Blass-Gurevich-Shelah ’99].
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Proof Sketch – Optimisation to Separation

Suppose we have a bijection σ : V → [|V |].

• σ induces an isometry QV → Q|V |.
• σ + SEP on P + Immerman-Vardi Thm ⇒ OPT on P .

Difficulty: We don’t (or can’t) know σ.

• Elements of V are initially indistinguishable.

Observation: Solving the separation problem may differentiate V .

• Let SEP(P , 0V ) = c.

• Suppose for some u, v ∈ V , cu 6= cv .

• Learn a relative ordering of u and v because cu , cv ∈ Q.

We can use such c to construct an approximate σ.
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Proof Sketch – Optimisation to Separation, contd.

Suppose we have σ : V → [n], for n ≤ |V |.

We say c ∈ QV agrees with σ, if σ(u) = σ(v)⇒ cu = cv .

Fold P ⊆ QV into Pσ ⊆ Qn .

• Pσ is a polytope.

• 〈Pσ〉 = poly(〈P〉).

• An optimum of Pσ gives an
optimum of P .

• SEP(Pσ, x ) reduces to
SEP(P , x−σ) = c, but...
only if c agrees with σ.

σ = ({u, v}, {w})u

v

w

u = v

P

Pσ

x

xσ
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Key Idea Attempt to optimise on Pσ.

• If c = SEP(P , x−σ) always agrees, return eventual optimum.

• Else, refine disagreement of c and σ into σ′ and try again.
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Summary

Prove FPC analog of P-reduction from optimisation to separation.

Theorem (Main)

Let Pτ,ν be a class of well-describe polytopes given by τ -structures
and the function ν. Then,

linear optimisation on Pτ,ν ≤FPC separation on Pτ,ν

And use it to prove several optimisation problems are in FPC.

Theorem

The follow problems are expressible in FPC:

• LinProg,

• MaxFlow / MinCut,

• MinOddCut, and

• MaxMatch.
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Open Questions

• Extend our main reduction to:
• quadratic programs,
• semidefinite programs, or
• convex programs.

• What other problems can be put in FPC?

• Is linear programming complete for FPC under FO
interpretations?

• Do our results provide a route to proving integrality gaps for
hierarchies of linear programming relaxations using
inexpressibility in FPC?

Thanks!
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