Derandomizing Polynomial Identity Testing for Multilinear Constant-Read Formulae

Matthew Anderson Dieter van Melkebeek
UW - Madison UW - Madison

Ilya Volkovich
Technion

June 10th, 2011
Arithmetic Formula Identity Testing

Problem (AFIT)
Arithmetic Formula Identity Testing

Problem (AFIT)

Input: \(F \in \mathbb{F}[x_1, \ldots, x_n] \)
Arithmetic Formula Identity Testing

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, \ldots, x_n]$, given as an arithmetic formula.
Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, \ldots, x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?
Arithmetic Formula Identity Testing

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.
Question: Is $F \equiv 0$?
Arithmetic Formula Identity Testing

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, ..., x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

$$(x_1 - x_2)(x_1 + x_2) - x_1^2 + x_2^2 \equiv 0$$
Arithmetic Formula Identity Testing

Problem (AFIT)

Input: $F \in \mathbb{F}[x_1, \ldots, x_n]$, given as an arithmetic formula.

Question: Is $F \equiv 0$?

Motivation: primality testing, circuit lower bounds, ...
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
Algorithms for AFIT

Randomized algorithm [DL78, Z79, S80, IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
Algorithms for AFIT

Randomized algorithm [DL78, Z79, S80, IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1, \ldots, a_n) = 0| P \neq 0] \leq \frac{d}{|S|}$
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
- Pick $a_i \in S$ uniformly, accept iff $P(a_1, ..., a_n) = 0$
- Correctness: $\Pr_{a_i \in S}[P(a_1, ..., a_n) = 0 | P \neq 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:
Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- **Correctness:** $\Pr_{a_i \in S}[P(a_1, \ldots, a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in u S}[P(a_1, \ldots, a_n) = 0|P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:
- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in S}[P(a_1, \ldots, a_n) = 0 | P \neq 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:
- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in S}[P(a_1, \ldots, a_n) = 0|P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in S}[P(a_1, \ldots, a_n) = 0 | P \not\equiv 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:
- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:
- Read-Once
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:
- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in uS}[P(a_1, \ldots, a_n) = 0 | P \neq 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:
- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:
- Read-Once
- \sum^k-Read-Once [SV08,SV09]
Algorithms for AFIT

Randomized algorithm [DL78,Z79,S80,IM83]:

- Pick $a_i \in S$ uniformly, accept iff $P(a_1, \ldots, a_n) = 0$
- Correctness: $\Pr_{a_i \in S}[P(a_1, \ldots, a_n) = 0 | P \neq 0] \leq \frac{d}{|S|}$

Deterministic algorithms for bounded-depth formulae:

- Depth-2 [several]
- Constant-Top-Fanin Depth-3 [DS06,KS07,KS08,KS09,SS11]
- Multilinear Constant-Top-Fanin Depth-4 [KMSV10,SV11]

Deterministic algorithms for bounded-read formulae:

- Read-Once
- \sum^k-Read-Once [SV08,SV09]
- Multilinear Read-k [we]
Theorem (Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic algorithm for identity testing size-s n-variable multilinear read-k formulae.
Outline

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}} + O(k \log n)$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.
Theorem (Weakened Main)

There is a \(s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)} \) time deterministic algorithm for identity testing \(n\)-variable size-\(s \) multilinear read-\(k \) formulae.

Techniques:
Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**

 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.
Outline

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**
 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. **Shattering**
 Reduces multilinear \sum^2-read-k to multilinear read-k.
Outline

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**
 - Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. **Shattering**
 - Reduces multilinear \sum^2-read-k to multilinear read-k.

Proof.

Combine and iterate the reductions.
Theorem (Weakened Main)

There is a \(s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)} \) time deterministic algorithm for identity testing \(n \)-variable size-\(s \) multilinear read-\(k \) formulae.

Techniques:

1. **Fragmenting**
 - Reduces multilinear read-(\(k + 1 \)) to multilinear \(\sum^2 \)-read-\(k \).

2. **Shattering**
 - Reduces multilinear \(\sum^2 \)-read-\(k \) to multilinear read-\(k \).

Proof.

Combine and iterate the reductions.
Fragmenting Read-1 Formulae
Fragmenting Read-1 Formulae

Take $\frac{\partial}{\partial x_7}$
Fragmenting Read-1 Formulae

Take \(\frac{\partial}{\partial x_7} \)

\[x_1 \quad x_2 \quad x_3 \quad x_4 \quad x_5 \quad x_6 \quad x_7 \]

\[x_8 \quad x_9 \quad x_{10} \quad x_{11} \quad x_{12} \quad x_{13} \]

Median
Fragmenting Read-1 Formulae

Take $\frac{\partial}{\partial x_7}$
Fragmenting Read-1 Formulae

Take $\frac{\partial}{\partial x_7}$
Fragmenting Read-1 Formulae

Take $\frac{\partial}{\partial x_7}$

Median
A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.
A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.
A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.
A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.
A Fragmentation Lemma

Lemma

Let F be a nonzero read-once formula.
Fragmenting Read-$(k + 1)$ Formulae

A read-2 formula:
Fragmenting Read-\((k + 1)\) Formulae

A read-2 formula:

Pick largest child which contains \(k + 1\) occurrences of some variable.
Fragmenting Read-\((k+1)\) Formulae

A read-2 formula:

\[
\begin{align*}
&x_4 \\
&\quad \times \quad + \\
&\quad x_1 \quad x_2 \quad x_1 \quad x_3 \\
&\quad + \\
&\quad x_4
\end{align*}
\]

Pick largest child which contains \(k+1\) occurrences of some variable.
Fragmenting Read-\((k + 1)\) Formulae

A read-2 formula:

\[+ \times x_1 \times x_2 \times \times x_3 \times x_4 \]

Pick largest child which contains \(k + 1\) occurrences of some variable.
Fragmenting Read-\((k+1)\) Formulae

A read-2 formula:

Pick largest child which contains \(k+1\) occurrences of some variable.
A read-2 formula:

Pick largest child which contains $k + 1$ occurrences of some variable.
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.

\[\frac{\partial}{\partial x} \leq \frac{1}{2} n \text{ variables} \]
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k+1)$ formula.

\[
\begin{align*}
&\leq \frac{1}{2} n \text{ variables} \\
\end{align*}
\]
Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k + 1)$ formula.

- $\leq \frac{1}{2}n$ variables
- $\geq \frac{1}{2}n$ variables
- $\leq \frac{1}{2}n$ variables
The Fragmentation Lemma

Lemma (Fragmentation Lemma)

Let F be a nonzero read-$(k+1)$ formula.
Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**

 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. **Shattering**

 Reduces multilinear \sum^2-read-k to multilinear read-k.
Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}} + O(k \log n)$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**

 Reduces multilinear read-$(k+1)$ to multilinear \sum^2-read-k.

2. **Shattering**

 Reduces multilinear \sum^2-read-k to multilinear read-k.
Theorem (Weakened Main)

There is a \(s^{O(1)} \cdot n^{k^{O(k)} + O(k \log n)} \) time deterministic algorithm for identity testing \(n \)-variable size-\(s \) multilinear read-\(k \) formulae.

Techniques:

1. **Fragmenting**
 Reduces multilinear read-(\(k + 1 \)) to multilinear \(\sum^2 \)-read-\(k \).

2. **Shattering**
 Reduces multilinear \(\sum^2 \)-read-\(k \) to multilinear read-\(k \).
Outline

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^O(k) + O(k \log n)}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.

Techniques:

1. **Fragmenting**

 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. **Shattering**

 Reduces multilinear \sum^2-read-k to multilinear read-k.
Testing $\sum^2\text{-read-}k \leq \text{Testing read-}k$

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

1. is closed under zero-substitutions, and
2. does not contain any monomial of degree $d \geq w$.
Testing $\sum^2\text{-read-}k \leq \text{Testing read-}k$

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class F of multilinear polynomials that:

1. is closed under zero-substitutions, and
2. does not contain any monomial of degree $d \geq w$.

- Let $F = F_1 + F_2$ be a nonzero multilinear $\sum^2\text{-read-}k$ formula.
The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

1. is closed under zero-substitutions, and
2. does not contain any monomial of degree $d \geq w$.

Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2-read-k formula.

Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.
Testing \sum^2-read-$k \leq$ Testing read-k

Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:

1. is closed under zero-substitutions, and
2. does not contain any monomial of degree $d \geq w$.

- Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2-read-k formula.
- Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F}.
Fact (SV Hitting Set [SV09])

The set of binary strings H_w with Hamming weight at most w hits any class \mathcal{F} of multilinear polynomials that:
1. is closed under zero-substitutions, and
2. does not contain any monomial of degree $d \geq w$.

- Let $F = F_1 + F_2$ be a nonzero multilinear \sum^2-read-k formula.
- Let \mathcal{F} consist of $F(\bar{x} + \bar{\sigma})$ and all its zero-substitutions.
- Some simple conditions on $\bar{\sigma}$ give property 2 for \mathcal{F}.
- For such a $\bar{\sigma}$, $H_w + \bar{\sigma}$ hits F.
A Structural Witness Lemma

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where
A Structural Witness Lemma

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

1. no variable divides any F_i,

\[\sum^{k} \text{Read-}k \leq \text{Read-}k \]

\[\sum^{2} \text{Read-}k \leq \text{Read-}k \]
A Structural Witness Lemma

Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

1. no variable divides any F_i,
2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:
A Structural Witness Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

1. no variable divides any F_i,
2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

$\leq \frac{n}{m^2}$ variables
Lemma

Let $F = \sum_{i=1}^{m} F_i$ be a multilinear formula on n-variables, where

1. no variable divides any F_i,

2. the factors of each F_i depend on at most $\frac{n}{m^2}$ variables:

\[\cdot \cdot \cdot \times \cdot \cdot \cdot \times \cdot \cdot \cdot \times \leq \frac{n}{m^2} \] variables

\Rightarrow F does not compute a monomial of degree n.
The Shattering Lemma

Lemma (Shattering Lemma)

For any nonzero multilinear \sum^2-read-k formula F on n variables, there exist disjoint sets of variables P and V, with $|P| = \text{poly}(k)$ and $|V| = \frac{n}{k^{O(k)}}$ such that $\frac{\partial F}{\partial P}$ is nonzero and can be written as

\[\leq 2k \text{ branches} \]

\[\leq \frac{|V|}{4k^2} \text{ variables in } V \]

where each small subformula is the partial derivative of some subformula of F.
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
2. $\bar{\sigma}$ is easy to compute.
Theorem

1. \(F(\bar{x} + \bar{\sigma}) \) is not a monomial.
2. \(\bar{\sigma} \) is easy to compute.

Proof.

\[\begin{align*}
\text{Suppose } F(\bar{x} + \bar{\sigma}) & \text{ is a monomial } M_n \text{ of degree } n. \\
\Rightarrow & \text{ If } n' \geq 1, \text{ by Lemma, some branch is divisible by a variable } x_j. \\
\Rightarrow & x_j = 0 \text{ is a root of that branch.} \\
\text{Pick } \bar{\sigma} \text{ to be a common nonzero of nonzero partial derivatives of all subformulae of the } F_i. \\
\text{Contradiction!} \\
F & \text{ is } \sum_{-\infty}^{2}, \text{ so } \bar{\sigma} \text{ can be computed efficiently using a read-}\k \text{ identity test.} \\
\end{align*} \]
Theorem

1. \(F(\bar{x} + \bar{\sigma}) \) is not a monomial.
2. \(\bar{\sigma} \) is easy to compute.

Proof.

Suppose \(F(\bar{x} + \bar{\sigma}) \) is a monomial \(M_n \) of degree \(n \).
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

\Rightarrow

\[
\begin{array}{c}
+ \\
F_1 \\
F_2 \\
\end{array} \quad \equiv M_n
\]
Theorem

1. \(F(\bar{x} + \bar{\sigma}) \) is not a monomial.
2. \(\bar{\sigma} \) is easy to compute.

Proof.

Suppose \(F(\bar{x} + \bar{\sigma}) \) is a monomial \(M_n \) of degree \(n \).

\[\implies \text{Shatter}(\sum_{2}^{2} F_1 + F_2) \equiv M_n \]
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

⇒

$\prod \ldots \prod \equiv M_{n'}$
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

\[\Rightarrow \]

\[\equiv \]

\[\Rightarrow \text{If } n' \geq 1 \]
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

$$\Rightarrow \quad \times \quad \times \quad + \quad \times \quad \times \quad \equiv M_{n'}$$

$$\Rightarrow \quad \text{If } n' \geq 1$$
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

$$\Rightarrow \quad \begin{array}{c}
\times \\
\cdot \\
\cdot \\
\cdot \\
\times \\
\times \\
\times \\
\times \\
\end{array} \quad \begin{array}{c}
\times \\
\cdot \\
\cdot \\
\cdot \\
\times \\
\times \\
\times \\
\times \\
\end{array} \quad \equiv M_{n'}
$$

\Rightarrow If $n' \geq 1$, by Lemma, some branch is divisible by a variable x_j.
Theorem

1. \(F(\bar{x} + \bar{\sigma}) \) is not a monomial of degree \(n \geq k^{O(k)} \).
2. \(\bar{\sigma} \) is easy to compute.

Proof.

Suppose \(F(\bar{x} + \bar{\sigma}) \) is a monomial \(M_n \) of degree \(n \).

\[
\Rightarrow \quad \begin{array}{c}
\times \\
\times \
\end{array}
\equiv \ M_{n'}
\]

\(\Rightarrow \) If \(n' \geq 1 \), by Lemma, some branch is divisible by a variable \(x_j \).
\(\Rightarrow \) \(x_j = 0 \) is a root of that branch.
Theorem

1. \(F(\bar{x} + \bar{\sigma}) \) is not a monomial of degree \(n \geq k^{O(k)} \).
2. \(\bar{\sigma} \) is easy to compute.

Proof.

Suppose \(F(\bar{x} + \bar{\sigma}) \) is a monomial \(M_n \) of degree \(n \).

\[
\Rightarrow \quad \times \quad \times \quad \ldots \quad \times \quad \ldots \quad \times \quad \ldots \quad \times \\
\Rightarrow \quad \ldots \\
\Rightarrow \quad \text{If } n' \geq 1, \text{ by Lemma, some branch is divisible by a variable } x_j. \\
\Rightarrow \quad x_j = 0 \text{ is a root of that branch.}

Pick \(\bar{\sigma} \) to be a common nonzero of nonzero partial derivatives of all subformulae of the \(F_i \).
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

\Rightarrow

\[
\begin{array}{c}
\times \\
\times \\
\times \\
\vdots \\
\vdots \\
\vdots \\
\times \\
\times \\
\times \\
\end{array}
\begin{array}{c}
\times \\
\times \\
\times \\
\vdots \\
\vdots \\
\vdots \\
\times \\
\times \\
\times \\
\end{array}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\times \\
\times \\
\times \\
\vdots \\
\vdots \\
\vdots \\
\end{array}
\begin{array}{c}
\times \\
\times \\
\times \\
\vdots \\
\vdots \\
\vdots \\
\times \\
\times \\
\times \\
\end{array}
\begin{array}{c}
\vdots \\
\vdots \\
\vdots \\
\times \\
\times \\
\times \\
\vdots \\
\vdots \\
\vdots \\
\end{array}
\end{array}
\equiv M_{n'}

\Rightarrow$ If $n' \geq 1$, by Lemma, some branch is divisible by a variable x_j.

\Rightarrow x_j = 0$ is a root of that branch.

Pick $\bar{\sigma}$ to be a common nonzero of nonzero partial derivatives of all subformulæ of the F_i. Contradiction!
Theorem

1. $F(\bar{x} + \bar{\sigma})$ is not a monomial of degree $n \geq k^{O(k)}$.
2. $\bar{\sigma}$ is easy to compute.

Proof.

Suppose $F(\bar{x} + \bar{\sigma})$ is a monomial M_n of degree n.

\Rightarrow If $n' \geq 1$, by Lemma, some branch is divisible by a variable x_j.
$\Rightarrow x_j = 0$ is a root of that branch.

Pick $\bar{\sigma}$ to be a common nonzero of nonzero partial derivatives of all subformulae of the F_i. Contradiction!

F is \sum^2-read-k, so $\bar{\sigma}$ can be computed efficiently using a read-k identity test.
Outline

Techniques:

1. **Fragmenting**
 Reduces multilinear read-\((k + 1)\) to multilinear \(\sum^2\)-read-\(k\).

2. **Shattering**
 Reduces multilinear \(\sum^2\)-read-\(k\) to multilinear read-\(k\).
Techniques:

1. Fragmenting
 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. Shattering
 Reduces multilinear \sum^2-read-k to multilinear read-k.

Theorem ()

Corollary

There is a polynomial-time deterministic algorithm for identity testing multilinear constant-read formulae.
Outline

Techniques:

1. **Fragmenting**
 Reduces multilinear read-$(k + 1)$ to multilinear \sum^2-read-k.

2. **Shattering**
 Reduces multilinear \sum^2-read-k to multilinear read-k.

Theorem (Weakened Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}} + O(k \log n)$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.
Outline

Techniques:

1. **Fragmenting**

 Reduces multilinear read-$(k+1)$ to multilinear \sum^2-read-k.

2. **Shattering**

 Reduces multilinear \sum^2-read-k to multilinear read-k.

Theorem (Main)

There is a $s^{O(1)} \cdot n^{k^{O(k)}}$ time deterministic algorithm for identity testing n-variable size-s multilinear read-k formulae.
Outline

Techniques:

1. **Fragmenting**
 Reduces multilinear read- \((k + 1)\) to multilinear \(\text{read-}^2\text{-}k\).

2. **Shattering**
 Reduces multilinear \(\text{read-}^2\text{-}k\) to multilinear read-\(k\).

Theorem (Main)

There is a \(s^{O(1)} \cdot n^{k^{O(k)}}\) time deterministic algorithm for identity testing \(n\)-variable size-\(s\) multilinear read-\(k\) formulae.

Corollary

There is a polynomial-time deterministic algorithm for identity testing multilinear constant-read formulae.
Conclusion

Extensions
Conclusion

Extensions

Conclusion

Extensions

 - Constant-depth formulae: poly-time.
Conclusion

Extensions

 - Constant-depth formulae: poly-time.

Conclusion

Extensions

 - Constant-depth formulae: poly-time.

 - Encompasses depth-four multilinear formulae [KMSV10], and pre-processed \sum^k-read-once formulae [SV09].
Questions?

Thanks!

The full version of our paper may be found on ECCC.